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ELEMENTARY PARTICLE STHUCTURE
CHAPTER 1
Roger E. Clapp
Canmbridge, Massachusetts

December 16, 1953

The purvose of this dlscussion and analyslé is to
explore one possible theoretical approach to the general
rroblem of correlating the elementary particles. This
problem, so phrased, 1s of immedlate interest because of
the increasing number ‘of known particles, but apart from
the modern phrasing ('"correlating the eleme...ary particles")
this same phllosophical problem has been with us for

several thousand years. .

Man's search for the "elements," for knowledge of
the ultimate structure of ﬁatter. haé led him, stage by
stege, t£o the concept of an elementary particle, the
1rreduc1ble structural unit of meiter. Yet 1t has not
been many years since the days when the nucleus was
consldered inviolate, and a few years earlier 1t was
the atom that was thought to be indivisible. Now today,
as the 1list ¢f elementary particles continues to lengthsn,
uore and more physicilets share the susplclion that thse
elementary particles nmay not be truly ultimate and

structureless afte:r sil.
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If man's 1deas about the structure of matter were

collected and arranged in rough historical sequencse,

then the later part of the 1list might look like this:

(v)
(w)
(x)
(y)

It can be seen that the historical order 1s also a rough
order of decreasing sizs.
sequence of lideas 1s,
of conceptual levels,

each level are constructed from bullding blocks found

Molecules

Atoms

Nuclel (and electrons)

Elementary particles:

in addition, a structural sequence

in the sense that the members of

on the next lower 1evel.

If the elementary particles are not to be consldered
ultimate and structureless, that means that there exists

at. least one conceptual level stlll lower on the list.

N,P,0, P, ¥y fyTyTyK, 6, X. A, ...

Furthermore, this historical

For example such a level might include asz members a

limited selection from the elementary particles, the

rest of the elementary particles then being composite

structures built from this limited number.

Such a
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point of view would divide the elementary particles

into two categorics, one group belng considered more
fundamental than the -other. Examples of this point of
view are Louls de Broglie's proposal® that the photon
may be a combination of tvo neuvtrinos, and ths suggestion
by Fermi and Yang® that the pi-meson may be built from
a nucleon and an antl-nucleon. According to a second
point of view®, the next lower level might consist
entirely of entities not Tound {or not yet found) among
the elementary particles. There could also be a third
point of view, in which the next lower conceptuzl level
1s supposed to contaln new entities in addition to

certaln selected elementary particles.

However, as soon as the existence of a next lower
level has been established, we will have to Tace the
question whether there is a still lower level beneath,
and 80 on. Will this sequence of conceptual levels ever
terminate, or will it continue indefinitely? Can we
always expect to find further internal structure as
we refine our theorlies or our measuring apparatus,
or is there a last level, whose members have no inner

structure?




A tentative answer to this question can 2 phrased
in the following way. If any level in the sequenc:
contains as many as two distinguishablé members, thsn
1t 1s meaningful to ask about their inner structure,
to ask whether trere 1s a further level below But 1ir
all of the elementary particles (along with any other
phenomena susceptible to direct measurement) can ke
congstructed from a single entity, then thls entity is,
almost by definition, the single memcer of the last
conceptual level. It 1s of course posslble to imagine
stl1ll lower levels, to imagine this single entity as
being built from several ingredlients; but as long as
all physical'phenomena can be expressed in terms of
the single entity consldered as a unit, the several
ingredients will always appear in exactly the same
proportions, in exactly the same comblnation. Such
an unvarying combination of the several ingredients
might Jjust as well be giﬁen e 8ingle name and treated
as a unit, since no physical operation will be able to
separate them. A last conceptual level, containing
onlv a single member, will here be postulated. The
ging..e member will be called the primitive field and
will be denoted by the symbol g:

it R
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(y) Elementary partlcles: n.p,e, ...

(z) Primitive fleld: &

It is postulated, as the basls of this theory,
that there exists a primitive wave fleld, E , cut of
which all the elementary parcicles are to be built.
The theoretical development will consist of the building
of various structures from such a primitive wave fleld
and the attempt to ldentlfy among these structures
certain ones which have propertlies simllar to the

observed properties of known elementary particles.

THE PRIMITIVE FIKLD

Most of the proparitles of a single primitive wave
field can be inferred from its singleness. Because some
of the elementary perticles are known to be Fermi-Dirac
particies, 1t 1s essentlal that the primitive fileld have

Fermi-Dirac statistics. A Fermi-Dirac structure cannot

possibly be bullt from any number of Bose-Einstein

building blocks, whereas both Fermi-Dirac and Bose-Einstein
struciures can be formed, respectively, from odd and even
numbers of Ferml-Dirac buillding units. Similarly, since

there are known to be elementary particles with a spin of
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one-nalf, the primitivé field cannot have integral
spin but must have half-integral spin; for simplicity
a spln of one-half was tentatively selected for the
primitive fleld. D5Secause the photon and neutrino

are included in the 1list of elementary particles to |
be constructed from the primitive field, 1t was inferred
that the primitive waves should have a velocity i

essentially equal to ¢, and negligible mass.

Any coupling between primitive waves must be of a

very restricted kind. The usual general forms of coupling
would 1imply coupling fields, with thelr own guanta, and
these quanta wculd be distingulcshable from E yet equally
fundamzntal. That 1s, there would then be two or more
mcmbers of the lowest conceptual level, and this vas

ruled out at the start. It will be assumed tentatlvely

the exclusion principle. (But see also Appendix D.)

A wave equation for a primitive wave, ombodying the
properties listed above, can be wriiten down directly.
Trie ingertion of zero mauss into Lhe Dirac equation gives
the equution of u wave with velocity ¢ and spin one-bhalf.
The question of statistics and coupling will not ariss
until two or more waves are combined, as in the next

gectlion.




In order to simplify futurc calculations, Dirac's
representation of the matrix operestors in his equation
is modified by introduction of the diagonai matrix T to
replace Dirac's matrix f); . As & result, the four-
component wave function can be separzted into a pair
of two-comporent spinors which are not coupled by the
wave equation. All calculationz can then be carried
out in terms of the two-component spinors, and this
is a great advantage when two or more waves are
corbined into a single structure. For a single primitive
wave, the expllelt weve equation will be written in the

following form:
_é—éa't— + TV E(X»Y:Z;t) =0 (’)

Equation (1) involves four matrix operators: T,

0 » Ty

in full four-by-four notation, with dots representing

p O; . These operzators can be written out

zexros:
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With the above notatlion, the wave function é(x,y,z,t)
becomes a column matrlix of four components. However,
the matrices (2) have no elements coupling the upper two
components with the lower two components. The upper and
lower pelirs -of components may therefore be treated

separately, in Equation (1), with T taking on the
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, respective values +1 and -1, while the conponents

of & have been reduced to their two-by-iwo forms:
a o ’ o
- ! [] _.'__:L ’

% = | : o;.:: i' s 9z = v ﬂ_{ (25)

In practice it willl be found convenient to seperate

the 7T- and J=-dependence of the wave function; this

procedure will become clearer in later secilons.

PLANE WAVE SOLUTION

Under certain conditions, Equation (1) can be

satisfled by a plene wave solution of the form:

¢

3 5(r 457, ) =

| EL(R&,F— w,ct)

(+)

a0 b P

|| where a,b,c,d are constants independent of x,y,z,t.

p—
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Substitution of (4) and (2) into (1) leads to the
following set of equatlions, linezr and homogeneous

in the unknown parameters a,b,c,d.

(Ko =Wz) & = (kx—ily) b =
—(Kx+4My) @ + (Ko+Hz) b

(Mo +Hz) ¢ + (My—siky)d

(Kx +iky) ¢ + (KO*KZ)J{

il

(5)

!

I
O o O O

Either the first or the second equation in (5)
can be solved for the ratlo a/b, but these two equations
will give consistent results only 1f the following

secular relationship is satisfied:
2 2 a 2
K + Ky T Ko = Ko ()

This same relationship is also required, in order that
the third and fourth equations of (5) give a consistent
value for the ratio ¢/d. In each case, however, only
the ratio is determined. To fix the individual
parameters, except for an adjustable phase factor, the

following normelization requirement will be imposed:
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lal* + [b]"+[e[*+ I = |k (7)

It has already been noted that the representation

hy

chesen for the operators 1s such theaet the first palr of
components is qulte independent of the second pailr.
There are two independent solutions of Equations (5),

each satisfying both (6) and (7), and these two solutions

are given below in (8) and (9):

:‘ af - (Ko*‘Kh)~(Kx‘3iff)
, | 2 (k2 + )%
; _
- y
i o= (m,—rrm)(;r,‘w.'n,)72 (g) |
I (k2 + 12)%

|

¢’ d =0 j
a= ) =0 \

| - . 1%
: C” + (Ko . Kz) (KX ""X-K}l)

2 (ke w)t

o{' | (Ko+ Kz) (Kx+j'K)’)

2 (k¢ + ) )
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These two independent solutions may conveniently

be written in a factored notation, which can be defined

aa follows:

i
+

a
b [] |a ol | ¢
c
d

RN
o
S

I

_+_

In the above factored notation, the G -opsrators take
the form given in Equations (3), and operate upoh the
two-component spinors labeled with the supereecript .,
vhile the spinors labeled T are acted on by the

overator ‘T, which 18 here represented by a two-by-two

matrix:

q
il
i
N
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In the factored notation, the two independent plane wave

solutions are:

T T
y | 3’ ez(/?’-?—/c,cf)+/~'¢’

wr
Il
S
o

T o ,

Y 3 /
s 10 c* n,c(ﬁ?—}(,c:‘é)%-/cgé’
B'= . e

in which the constants a',b',c",d" have the values
given in (8) and (9), while the phases ¢' and ¢“ are

real numbers but are otherwise arbitrary.

(12)

(12)
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DOUBILE-WAVE EQUATION

Except for changes in normalizatlion and matrix
representation, the equations for the primitive field
have so far been taken from the formalism of the Dirac
theory, the wave equation (1) containing a differential
opsrator acting on a wave function. The Schrddinger
equation has a similer general form, and can indeed be
derived from the Dirac equation. In generalizing the
present theory to cover the description of systems of
two or more primitive waves, the formal procedure will
be borrowed from the Schrddinger theory. That is, wave
functions for individual waves will be multiplied to-
gether to give a wave functlon for the composite system,
and the correspoinding differentlal operators will be
added together. When applied to the Dirac theory, this
is often called the "many-time formalism", but in the
present theory the simplicity of the couéling between
waves makes 1t convenlent to write most of the equations
in terms of & singls "léboratory time". It should be
noted at this point tﬁat the chalice of a particular

scheme for desorlbing wave systems 18 a tentative one.




Plane wave solutions of the single-wave eguation (1)
have already been described and are given in (4) and (12).
A more general solutlion to Equation (1) can be formed
from a linear combination of plane wave solutiona. Two

such linear combinations might be wrltten in this weoy:

é,‘1 = .[A (k:) koa)' g ('?: -tl 52 1 Koa )"4’(“ ‘JK("R "ix" (/3 “)
" B, = [B(Ri k) BB tai T, Kot) diw di -t (13 )

| The labels 1 and 2 serve to identify the two solutions.
{ A general wave function describing the combined system

! bullt from E A and QB’ and antisymmetrizz>4 to show the

Fermi-Tirac nature of the primitive fileld, will be:

; T02) = [ ARy ) B (G a)-
I’ ) g(F:?t\;zx,Kaa)'g(a?tﬁ;; zﬁ? Kﬂ")
!: ~&(Fytas s, 1) (R0 15 s i)t

. . JK,“\ ‘IK;’A AKu ‘{Kxb dkyh ”/bi (IL’L)
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16.

It 18 important to distinguish between the adding
of solutions to produce a new single-wave solution, as

in (13a), and the multipilcation of solutions to produce

-a multiple-wave system, as in (14). While this distinction

does follow current practice in quantum mechanlics and
field theory, it should be considered tentative here,
until it can be proved from the initial postulate or
Justified by the results of the theory.

The double-wave function £(1,2) will separately
satiafy both of the following single-wave equations:

B ]
L;!_-:a%,- + 5w Plz) = 0 (i53)
2 +nEv| Plo) - o (%)

It 18 at this point that the separate times, t. and ts,
can be replaced by a center~-of-gravity or laboratory
time, T, and a relative time, t, . The separate space
coordinates, ;; and i':a, can at the same time be replaced

by center-of-gravity and relative coordinates, R and T.
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The new varlables are related to the old by
equations which includs the following:

=3(t+ ) ettt
ﬁ=i‘(ﬁ+a) S {1 r) !
22 .2 2.1 2)( Uy
2T = 2t, ' 2t, 2t, ~ 2 (2¢, 3t,

V==%+V V.=7%-V.

From Equations (15a) and (15b), by addition and subtraction,

the following equations may be derived:
L+ H(rEnE)Y,
+@5-n&)- v | La2) =0 (17)

{-é—ﬁ;—t—#('z;a", Ta )VR
] + (T +T o) V]-rr('i -0 (18]

1.91
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Equation (17) hes the same general form as the
conventicnal wave equation for a fleld of a certein

mass (M) and any spin:

l_ﬁ.;) N Mc-]éf = & (,q)

o +

In (19) the repeated index M indicates a summation

over fhe four space-time coordinates of relativity
theory. The F;‘ are operators whose commutation rules
depend on the espin of the fleld & M 18 tne mass of
the field. A comparison of terms in (19) with terms

in (17) shows that the double-wave system Q(1,2)
satisfles the same law of motion as the fleld é, except
that the masa of the fleld é is replaced by an operator
which aets on variables in 5.1.3(1,2) which are concerned
with the inner structure of the double-wave system.

That 1a; the dcuble-wave syciem as a whole may be treated

es a fisld or particle, with the internal structure or

relative motion, as selected by the opersator ('C'a:'—- ’C‘,E{)-W ’

accounting for the effects which we know by ths name

of mass. This 1s a tentative mathematical suggestion
based on the similarity betwsen (19) and (17), but its

physical interpretation has the attraction c¢f great
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gimplicity. It is known that an increase in the kinetilc
energy of internal motion (as, for example, the spinning
of a gyroscope) will be reflected in a finite increase
in the mass of the system. Thus the mass of a structure
will contain contributions due to known internal motion;
it would be gratifying if all mass could be shown to

arise in the same way, from some form of internal motion.

SPIN ZErO SOLUTION

The wave function g?(l,z) will be separated into
two factors, representing the center-of-gravity motion

and the internsl structure:

EP (,’2)‘:__ elK’R —iGel t{/(f‘) (2 O)

In (20) the relative time, t,, was omitted from explicit
consideration, since it will not be involved in the
solutlion of the wave equation (17). Strictly, (20)

can be considered as a part of a more general solution,
or‘as a special case in which the relative time, t,, hase

been set equal to zero.




Substitution of (20) into (17) gives:

K, ¢ (7) = [+(@5 +5&)-K
Hos -TE) V] WE) (20)

Since both T, and Ts are diagonal, and each commutes

with everything in (21), they may each be given the

| numerical values of 1. For the first solution to

be exaemined, both T; and T will be set equal to +1.

K 40)= 47 +3) K+ @E-2) 2v.] ¥F)  (22)

i A further simplification can come from the selection
of & solution for whilch the center of gravity 1s at rest,

o 80 that iris equal to0 zero:

Ko “P(F/\ = (5'7" 5’2) ‘;J:_‘Vr 51’(?) (23)

Equation (23) is now an eigenfunction-eigenvalue

problem that can be solved directly.




21.

The form of Equetlon (23) is such that a
solution 1#(?) can be restricted to have a definite
value of total internal angular momentum. The value
zero wlll be chosen, although other integral values

could also be studied.

It will be necessary to have a definite spin notation,
to show the various O -components and %-components which
are included in tk(?). Each of the two waves which
make up the double-wave structure can have two cholces
for its Q@ -spin, and two choices for its <T-spin, although
in the present case, with Equation (23), the T-components
have already been selected and fixed. For representing

elther kind of spin, the following basic frame will be

used:

xX*t)- xX*(a)

X(1) x*(2)
X()-X"(2)

Xty - x7(a) (2 4_\

/
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For exemple, a state in which votnh Ti and Tw have the

same value of +1 can be indicated by the notatlon:

T

= ~ X)) X*) (25)

A singlet combination of the two ¢ -spins can bte written:

(1), = 5| =5xExE) (26)
- X6)-X*6)]

The vrief notation on the left of (26) will serve

as a form of abbreviation which can be generalized to
other functions of the spinor compbnents. In addition

to the *3, function given in (26), there is a *P. function
which can be formed from the vector T and the available

spin components. This ®P, function 1s given in (27):
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—=(x=4y) "
W = 5| . (27)
(x +4y)

The two ¢=-spin functions, (26) and (27), are the
only ones which satisfy the requirement that ihic total
internal engular momentum vanish (J = 0), under the
conditicn that K be zero. Later, when the motion of
the center of gravity 1s considered, so that E'differs
from zero, two more @ -spin functions will be introduced..
But when the center of gravity is at rest, 1t 1is

sufficient to write ((T) as the sum of two terms:
V) = avs + by (23)
b= T ), A () (21.)
b= AR A () (213)

It should bs woted that both spin functions (26) and (27)

!

are antlsymmetric with respect to exchahge of the labels
1l and 2. It is required that \P(?) be antisymmetric.
Thus the scalar functions fy(r) and f,(r) snould be

symmetric, and will actually be found to be functions of r¥®,




The general solution {28) cun now be substituted
into the wave eguation (23). In the spinor notation

of (24), the operator (& — 0;).V, hes the form:

(ql-oz)’v —
r
\% +“"'Vz:, _2‘52'; -(%"i——i, )

Equations (23), (26-30) can be used to obtain a pair of
second-order differential equaticns for the unknown

scalar functions f (r) and fy(r):

W y

Lf"‘+ 2 4+ < | ) = 0 (314
e - — )
LriLre]| ) =0 (14

where an abbreviation has been used:

- (5] 22
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That solution of Equaticn (3la) which is finite at the

origin, r = O, 1s the spherical bessel function Jo(k.r):

(33a)

#O(KP) = 514:(£Kr)

Similarly, the solution of (31b) finite at the origin

is also a spherical bessel functlon:

sin (kr) — (kr) cos (kr)
(kr)?

These sphericel bessel functions satisfy the general

ﬂ't (Kl") (335)

relations:

) = —ir g () (54)
Fom (kr) = Z:TI [;vm_. fer) +werty, (nr)} (35)

For convenlence the solutions of Equations {3la)

and (31b) will be written in the following way:

fa(r)
‘)Cb (r)

o (K1)

= AK 4 (xr)
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Then the solution of Equation (23) c¢an be written:

K°("l'a.i +b) = [@-%) iV, @a-"‘ )
+ 2k (‘i"ai “i’b)

That is, the operator éﬁ —-Gi)-:%-VL has the

I

eigenvalues +2K and -2k , which belong to the eigen-
functions (‘Pa + \ltb) and (“}ba - \?b), respectively.

These eigenvalues are numerical values for the quantity
Ko, which represents the energy or frequency of the
double-wave structure, in wavenumber units. Since thie

is the rest system, 2K represents the mass or rest-
freqﬁency of the structure, again in wavenumber units.

It remainsa to he verified. in later sections, that this
gtructure really moves like a particle-with-mass, when the

genter of gravity i1s allowed to move through space.

There 1is also a question as to the significance of
the plus-or-minus signs in (37). This question cannot be
answered st this stage of the theoretical development,
but it can be pointed out that there would have been a
sign reversal if, in Equation (21), T, and Ta had been
put equal to -1 instead of +1. The appropriate T-function

would'then have been:
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Instead of (28) and (29), the expansion of qb(?)

would have been:

V() = ad, + by, (39)
vi = @), ) (#0a)
4, = ) ) L) (08)

Equations (30-36) would have remained applicable, but

\

I

instead of Equation (37) the solution would have been:

(v £ %) =Foc-(H £ 4) (+1)

wilth a reversal in the signs attached to the quantity 2K.
Even though, for other reasons, this partlcular structure
will be found to be an unsatisfactory model of an
elementary particle, it 1s nevertheless permissidble to
anticipate that the exlistence of both positive and negative
solutions for the rest frequency Ko may have some
correlation with the existence In nature of certainr

elemantary particles along with their assoclated antiparticles.

o
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THE RELATIVE TIME

Equation (20) can be generalized to allow for

a dependence upon the relative time variable, t, .

f(li)"’ KR A-K,cT ¢(F"‘r) @2/\.

The new function ¢(F,tr) can be related to f(?):

¢(7 0) = PP (+3)

When (42) is substituted into the relacvive tims
equation (18), the result, analogous to (21), 1is:

42 4t = [HrF-u3)-K

HEE ORI [ R ) (k)

As before, T: and Ti will be set equal to +1:

¢(F r) [-L(fd" ?)
+1(@+F) 4V 4Rt (as)
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-
With the center of gravity at rest, K = 0 :

ARG -4 @+T) -1y Aty (ko)

] Equation {46) can now be solved, with the uid
of (43) and the following easily verified relations:

| G+%) Y = © (¥7a)
| ' @G+%) Yoy = 0 (4#7b)

o Hore i.iza and ‘Pb are as glven in (29), and the

operator (6';+6‘;)-V,. has the form:

2% |22 2-3) |
@Griz)l - - |B-D £4$>
| 0 I -
N BB - 25

@ﬁurai)Jv; pomnd
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It follows, from Equetions (28), (29), (43), (46),
ey
and (47), that, in this specisl case with K = O,

c zt ¢(F t") =0 [4‘ 7)

fps (o)
Furthermore, repeated differentiation of (46) with

respect to the relative time, i, , gilves, for any value

of n:

?t g A (/F t ) = O {50>
p=0
As long as K= 0, ¢(?,tr) can be taken as constant
with respect to variations of the relative time, t, ,
so that Y (¥), as given in (28), (29), (36), (37),
is a satlsfactory solution of Equation (46).

When K differs from zero, Equations (22) and (45)
must be used instead of (23) and (46), and the question
of the wave function's dependence upon the relative
time, t, , wlll then have tc be re-examiped. In Appendix B

such a re-examination is carried out.
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MOTION OF CENTER OF GRAVITY

When the center of gravity is in moticn, so
that -K. # O, the more general wave equation (22)
must be used instead of the simpler equation (23).
The wavs function L‘l(.r.) will also be more complicated.
Instead c¢f the two terms (29), an infinite number of
terms will be used in the expansion of lp(?), but
these will be arranged in increasing powers of k’;
that is, in order of increasingly complex dependence
upon the components of K. 1If Py and *’b in (29) are
taken as the leading terms in this series, then the
rest of the terms are generated from (., and (/b by
the operators that appear on the right-hand side of
the wave equation (22).

It should be pointed out that such a procedure
for generating the terms in the expansion of Y’/(.r'“h
assumes that the wavenumber X cen play the part of
a parameter independent of f(’, while K, is allowed
to vary with K. Thus Equation (32), through which
¥. was originally introduced, will hold only when

-
K = 0, and will need to be replaced dy a more general

equation, to be found from the solution of (22).
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It will be convenient, because of the complexity
of the expansion, to divide the wave equation (22) by

the parameter X, and to introduce the following

abbreviations:
w = ’Kﬁ& (512)
= & (515)

The wave equation can then be written:
R T W o AN L | /
wy/(r/=tz(07+°;)-/a +(F-B)>Ep® (52
d

In addition to the previous 0-spin functions,.

(1), anda ¥RA), , in (26) and (27), there will be two

new O -spin functions:

= (ke=ic k)|
£, =5 . (53)

(ke +i ky)

' f.\ba
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T
~ [ (k2 ~key)—d (kax ~ ez ]
S/ZFX 2 = _L (kxy - 'é)’x)
|~ ro 2% (kx)' - /éyx)

[(kyz-kyy) +4 (kax—ko2)]

The above function (54a) can also be written in the

form:

(hemik) 2 — kp(x=4y)
3{5" - 554;' i-(khr'-'ﬁyxﬂ

% ' £ /‘: (kxy - k’yx)
(s 4by)z ~ hy(x44Y)

A number of identities, useful in the solution
of equation (52) and the anélogous relative-time

equation, will be written down here:
Ve dn(*r) = —-k’j‘*,[xr)-?"

(5':4- &:>-v:. ,(‘-")o = o
(F+R)N, @x) = - H R,

\_qg

G-y M., = -4l }
@&-) Y bldl = O

(54 s)

(55)

(5¢)

)

B e 2
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@+%)k ), = o
(@ +R).EYF), =2lhxr)
[a‘%*’a)°rmo = O

F+ )R B, = 2 KA - 2 (R9)- T,

(T+&)-F A), = 0
).}
"

@ +3)- T X, o
@ + &) T YE), ~ 2 ikxv)
(@ +B) T GRx®), = 2(RP) X, — 27 e

G-%)Ek @, = 2%%®),

G-T) R = 2 (7)), \
G-R)RW, = 2 4 A), [
(%—%)t ’é’Ex?). = 0 J

@-G) T, = 2%,
@ -0)RYA), = 2r* d) >
@& -T)RYR), = 2(@7P) &),
T -03).F GExd s O J

/4

(5%)

(£9)

(¢0)

(c1)
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In the wave equation (52), the operator on the

right hand side will be denoted by the symbol i:

4

H = $@G+3&)% + ¢

4

[ —.’-)'ZLEV:. (62)

This H is equivalent to the usual Hamiltonlan divided
by the product ’,‘;K. The wave function \‘b(f’) will

be expanded in a series:

PO = 2t + by v et dofy 4 (¢3)

The coefflicients a,b,c,..., will be determinsd later
through the solution of a set of simultaneous equations,
but first it will be necessary to identify the separate
functions, the '\L'a’ (’b’ +c’ and so forth, and to

calculate the matrix elements of the operator H.

As mentioned earller, the procedure will be to
start with the +@'and ﬁLb already given in (29) and
(36), and to operate upon these two, and on each
successiyg function when it has been 3identified, with
the operator H given in (62). 1In thie way ths first
fifteen functions of the infinite set have been determined.
The 1ist, (64), omits the common factor :?tj+, which

should be understood in each case.
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s = doler) - @), (ckz - Ers)
¥ = £X4 - (7).

Yo = dx g - G £,

4 = —AK4 -{(k’-?)-’(??). - 37 F).,}

b = s {RA-5p0r ) ),

. tr = g5 { [RF) = +k*r [ 17,

' g @A) R

?’, = ":xys { (R.7) - ‘,'-‘k‘r‘}- ’(:"E"F).

= g {[ca 7P - e ] TR
tFaErre + a1, |

= wige{ (RF) = SRR +3kr ] o),

b= s { [(e - 3R v + Fbnd] TR,
| + [‘ L@ v+ 45 (RE)Rr "[F)‘}
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V= 4Xhy {(m - Z @A e + 3k ""} e
Ik .f,a"?s'zj [z~ 4 (&7 her + S (2N ),
H-FEF e+ TR~ £ & "ﬂ'm'}

™ X‘;;'{(ﬁ'f ?) - f‘}i (R¥) kre '
+ A A~ £ ke ). ),
tom iy { [0 B mers

‘ - 3
+ T (R AR 7‘%/4 ‘r"]‘ (7

.g.[-,"-./r.?')’r‘

{5\

+ 52 (RRPA P - S (2 Ak fk").}

s \& 7. |
+m(l’¢"?) k¥r* —;;%ﬁ‘r‘ J &FXF.)O

| : \/II:“"XZJ?' (i'-?’)‘— -,Laz[z',?)“kar;

The operator equations which these functions satisfy,

and through which they were generated, are:




tha= 24,
Hh= 2f + %
e &
Hyy= $8¢e +;W
Hie= & H +2:
Hip=%ve + ‘Pf
Hiy= Ther "‘ ‘Pi
H&=%P%-+Z#
He:=74 + 2":
Hy =% ﬁ?
Hye =TT H +.42
Hy =ik % +z,l/
Hiw=HF¥ + i‘r‘:

CHdw= T
/34@"'%
O

28.

(653. - QS’/MD
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Into the wave equation, which can be written as

(h-w)p® =0 (¢6)

the expanded‘tf(?) in (€3) can now be substituted.
When the indicated operations nhave been carried out,
as in (65), the resulting terms can be collected in

the following weay:

o= {_--woa. +.2-é]-‘//a_ |
+[2a —w b+ 2itc]
[ b~ weoe +4hrd] e
+[ ¢ — w-d + T;'L’EJ"‘PJ
TP | (e7)

The functions ), f%, .es , 88 given in (64), are all
linearly independent, are in fact orthogonal in a
fashion.which will be described later, so that (67)

can be satisfied only if each of the bracketed

expressions vanishes separately. What results is
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a set of simultaneous equations, linear and homo-
! ‘ geneous in the unknown coefficients a, b, ¢, .s. ,
and such a system of equations has a solution only
if the corresponding secular determinant vanishes,
However, in this case the secular determinant has an

infinite number of rows and columns; the Tirst !

ten-by-ten portion is shown here:

N H A A
S

1
=g
§ R
ks,
=,

4 . . . . : . 1 =ur {F .
i i lr . S : : . T e %%
| 2| S :
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ORTHOGONALITY AND NORMALIZATION

It was mentioned, in connection with Equation (67),
that the functions |+%, ‘+%, cee , Blven in {(64), are
orthogonal in a certain fashion. .The hermitian scalar
preduct of two O -spin functions can be formed in the
usual way, by multiplying corresponding components
togetner, after first taking the complex conjugete of
the components of the first function. For example, the

hermitian scalar product of (27) and (53) is:

(. 20.) = 1 i) [ (ea-ik)]
+ Zok, + Z kz‘
+[eerin®] [t 24)]

= k-7 (6D

The complete list of scalar products among the four

J-epin functions ia given in (70):
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L/'/l).q ,[1)¢> = 1 (703— 7[)&)

|
3

(., @)
(@), /R).) = K
(i), )
( 'Q).,(?).)
('@, ®.) = o
(@).Jr?.,) = o
CE.®) = RP
[3(7’).,’&@@-) = 0
(), JGER) = ©

A limited scalar product of two functions will be

A\ 2

kert — (K-F)

]
0

defined, & hermitian scalar product in whioch there 1is
summation over spin components, as in (69), and averaging
or integration over the direction of the vector *. In
practice, the .direction of T enters into (70) or the

scalar factors in (64) only through the combination P

L

e e — ==
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—-’
An angle ’l' between the two vectors k and :‘:, can be

defined:
A R cosy
s 2 | [ia 2 ‘u’?"‘-‘j
Siu 7=;:;;.Lkr—-(z)_[

Averaglng over the direction of T is, in practice,
equlvalent to averaging over the angle )z » With the
aprropriate welghting factor % sin‘z . Examples:

e
(farts) = f*‘-“z {#}

In the sense of this limited scalar product, all the

functions in (64) are orthogonal.

—— e s s

(71,)
(71 &)

P S Y



| It 1s also possible to introduce a relatlive or
| ) /
| limited normalization, by defining new functions, #@,,
rolated tc the old functions, 4@,, by normalization

factors Ny:

e
(s )

N \l,b? (742)
(% r)zm . j”:' (xr) (T4b)

; Mo = = 1+ (15.-75)
| N, = | = l
( Nc‘ _ 7';(‘3')/3 - % v
Ni =536 = & (&)

g Ny = R0 - O

| N =% - (ER )

| Nosw = (R

| N, =@ €0 =5 (ZL )%
« N = B(E = (SRR
t L. 231 3)'/:. _ /72 g2 ” 2\%%
l

In
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It will be noted that the normalization factors follow

a definite pattern of modulus four. The functions (64)
also follow a similar pattern, with the four O™-spin
functions feappearing cyclically. The first, fifth, ninth,
and thirteenth functions have the angular dépendencé upon
cos 3 of the Legendre polynomials Po, Pg, Pf, and ks,
respectively, and the correcsponding normalization factors
in (75) contain numerical factors which are just those
needed to normalize the legendre polynomials. The
polynomials in the other functione of {64) can be considered

to be generalizations of the legendre pelynomials.

An attempt to replace. the relativeunormalgzation.1n
(72-75) by an absolute normalization would encounter e
spetlal difficulty. The asymptotic behavior of the

spharical bessel functions is:

J:’Zm (x Y‘) N' (__ ')/m. i WP (7 Ga,>

. (KV‘)ZM*{

324“1 ()CY‘) = ("I G /::T:);f:*z (769
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L vl Y L
& " i
P-Jr(\k,,,\f'.,,) wr Ko 2 (77)
In Appendix D it is shown that even tue inclusion of a
very small mass in the primitive wave équation will not

produce convergence of integrations like (77).

The asymptotic behavior in (76), in fact the general
‘form of the functions {64), can serve as evidence that
| the primitive waves used 1n bullding the structure ara

free waves in space, that the etructure 1s thus a sort

of standing-wave system.

1 The wave function \I/(?) can be represented as an

sxpansion in terms of the new, normalized functions:
. ! / / / &a
| (@) = a oy + by (78)

|

‘ | The new coefficients, a', b', ... , are related to the old:
| ! all ' A
i

'I b’ = b. Nb'-' |\. /"7

f
-,
N’
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In place of (63) a new secular determinant 1s obtained,

with matrix elements symmetrical about the dlagonal:

| —

a |'-w' 2

i a:’ A e d' e’ F’ 3-‘ %’ A':_/ :l
1) PRYA

| | - MG k-

i VS Y, 1(.;.)’6. C e

| S IR AR S € 77)

f’ . . . 3 zg)%_u- k(é;;'/’ . . ,

a_' : . - : /t(:g‘)%-&f k{g-)"‘

g - - - - - /t[r;‘)"-u- 2{;,)'4.

i | J0- - - o 0. 2(/;9%_“, 1{.3:)'4

fl o i
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SOLUTION OF INFINITE EQUATION SYSTEM

In the case of a finite equation system, the solution
of the secular equation ordinerily limits the frequency, w,
t¢0 a:.certain number of discrate elgenvalues. In the case
of the infinlte equation system it appears at first inspection
that the equations for the coefficients a} b} ... , can
be solved for any value of w. If the first coefficient

is put equal to unity, then the list can be written down:

a'= | - (%la - Bly)
b =&
A- -3./'/;.{# (w:._ kt_“) + 1}
d' = F @Y {E (k-0 + 1}
"= §(5)%. 3,:( k-4 + ’f}
= 20V k(w8 (k- 8) + &)
= de (a0s ([t monfomie) + 1)
::-Ei-{ 7 (Tt -d+ﬁz)@r~m€>(2r -k~ 1) 4~ 12;}

{ % ‘n[35"'[‘¢"-4) -5k ('7w"-au-)_}(w “eta) + 3}
a: =:iﬁi ‘FKA?'[:'7“’ (ur‘-w¥>(q7ar -I‘)

—kY(€3w? - 280"+ zse)j(w‘-/i‘-'*) + 1 }

n%
[

n

.

-,

SN
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It 18 clear that Equations (81) would be greatly simplified

w*= k* + , (& 2)

Howé&er, stronger arguments are needed before (82) ca

be considered a true limitation on w.

As an alternative approach to the elgenvalue problem,
the infinite determinant can be considered to be the
limit of a sequencé of finlte determinants, the n-th
determinant belng formed from the first n rows and n columns
of the infinite determinant. (Either (68) or (80) can be
used.) There will then be a sequence of secular equations,
each equation giving a functional relationship between

w and k. The first equations in the sequence are:

t?”:IL = - W (3;33," 2“%[)

- 2

2 -& wrok

O
W

~
o
i

- L 2_ [

0-3, = |2 o MgP| = urlr-3i )

WO




0.

-

O=D = wiwr—k*-4) + 5L°

0 = De = - {(wr = F)er-i*-4) + £ 1]

0« Dy = (=t ¢ £R) (o k8 + $k*

O =Dy = = (b bt = kot + Ao b+ 2 4"
o= = ok ~4)" + %é‘u’(w‘-k‘-y) +3‘%/¢‘*

O =:D,; = —;‘rz(w'“-— i%‘”?(“’“/t"-u-)z
+(‘%h’fd’ - %k’}(wtk‘_u) + % ku}

L 4

Osj% = “(LJ u-)fw‘-—-k." 4)2.
*(“k‘W“ 34k’-w3+ k)(ua b “/+ %A‘

O=D = "‘Jf(“’ ~ e — £ prt + 25 ho (ol )
+/gl'¢.:“' LE pr™ — B2 gt 4 ;%e,é")(w‘-/c’-u)

a'o €
+ 737 r

08% = w-‘(u‘ ™ - %)3 + f‘) ‘J'*[LJ' i ”.)

+ I (o) + SR A
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The solutlons of the seguence of secular eguatlons,
a8 plotted in Figure 1, can be seen to group themselves
into several sequences of curves. Each sequence of curvss
appears to be approaching one or the other of the
following straight lines:

7
wr = A+ 4 (B4 2)
Ve
w = O (84 4)
Each time the size 2of the secular determinant is lncrease

by four more rows and columns,; new sequences of curves are
sterted and are added to the other senuences slready formed.
But each new sequence gets out in much the same way &as 1its

predecessors, in the direction of (84a) or (34b}.

In a geometric sense, (84a) and (84b) are the limitirg
solutions of the sequence of seculzr equations, and will
therefore be considered to be the solutions of the infinite
secuiar equation. Howsever, 1t would be desirable to haveo
an analytic proof that (84a) and (84b) are the limiting
soluticns of the sequence (83), and in the next section

an analytic proof by induction is given.
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INDUCTIVE GENERALIZATION

The close connection between some of the functions (64)
and the Legendre polynomials has already been pointed out.

The even-numbered Legendre polynomials are defined® as:

(4N)! 2N (ZN) (ZN-I) ., 2N-2
132N (z) = ZIN[(Z )l]z {Z 7. (H-N—;') Z
(ZI\Q (zN-1)-(2N-2)- (2N-3) g 2N~ 4 ‘

* - (#N=i) 4N-3) +}

(4N— 2,,)' . g AN=2r

- A“'(‘) Norl (2N-r)] -(2N-2r‘).' (85)

=0

The first, fifth, ninth, etc., functions may be written:

k;/; =y = 2»,(1(") ? cos 7) (1) \\
Vo = ¥ = Kirig, 55 Plasy). ) }(m)
K*r"’oh' 9% E(cos;z) F(l), j

Vourt = )™ gy - (051" B wg) - 10, (36

N
I

=
!

Similarly generalized expiressions can be obtained fox

the othar functions:




. AN l
= AL K- (r) 'a’z/vﬂ '&‘;,;,y‘“/I ’

{[(_iNf-I)P &’057)-# ces y d( ) ‘ZNA',DjWﬂ (p)
4
Ty e m ) ey
‘1",1}'\!-#3 "K{VP)ZN a/ 2N+ ( (04+3) 3)>'/1'

2N+ (2N+

(Bl oyl o) 153 i)

!
w2

2Nt 1

e (anv s
{ Ty Fovea (o) | )
= (2/\/7‘2) Ewa (¢257)

—Cos y -

; A[w \EN-/'Z[‘”yJ L. /f’)} [%’«79

‘P‘i‘N-H}:—" (kr)
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A generalized section of the matrix (80) can be

obtained by substituting (856-89) into (63) and (66):

N HNHL AN+Z 4N+ 3 pNes

- 2.(—2ﬂ-¥/2 . . | ..

HN

T
e z-(ﬂ’—,f‘ cr 2.(‘%‘3’*
wal -l e il (o)
N3 : /‘(Zx:;)y% ’é(ﬁ%)a

_ 2N+
e - ’*‘(;,msf ~w
The operator equations on which (S0) ie bassd are these:

U3 /

/ 2N-1\" |/ 2/\/.\'/‘
H Ven = fé(m) "hw-: + 2‘(’,;‘,?:’77 " PaN

/

‘ (2N A g NEIL
H Yuve = 2 wwi} Nt (T Yenvea

17
', ﬂ‘/QN'f‘l a / 2N+ 2 /2 / . ( )
H Yowvea™ < UNIi'¥ Viwes TR ines) " Cant3 11
5 m e f2NE2\A o f2Ne1 VA
Hh"’” k'(/m??‘) Venra K ZJ/VV'%;:', *VaN+ &
VA ¢

- o b f2NFI “a JaN+2la




If the successlve secular equations in the sequence
(83) are obtained through the usual method for evaluating

determinants', then a number of recurrence relations are

eanlly derived:

F - _ ) g/\,’ )
‘PH'N-H = T S ¥ AN+ Liw-

Dwta = "“"-DWH . Sy v * Dpn

— - . Lt 2 .Q_Ni.z..
-Dl(-N+3 = ~« Dynra — £ N Dl
a gN+l T
Dy = ~wDines —k TS P2

Ths relations (92) can be combined and manipulated to

give other recurrence relations such as (93):

p" . [,..g 1> > “ + kl (9-N‘+_20-(V+Il)‘ .
N+ 8 w( k>-#)+ 4 —-_‘(4‘/\',7‘3)'(#""*’7) .DM“«.

— ok, _(RN+NY aN+2)* . D . (7"3)

Gwr) (bn+3)” (v +5) ~ *

sequance (83) of secular equations, the fourth,

-
o+
b3
D

eighth, end twelfth take a particularly eimple form:
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0 L ‘DﬁN = (—_”'k’.)N i BN (“‘)

where:

w*. (W‘—&‘-—‘f)
_,'*ka

«* =

and BN(«“) is a polynomial ci degree N, in «&°.
Substitution of (94a) and (95) into (93) givee a

recurrence relation among the polynomials BN:
. (8:N*+ 20N +11) ]
== o — .
BN*'ﬂ [ (;{,N+3). (;‘.N.,.q) BN+'
_ _(aN+D)* - (2N+2)" g
(#N+1)-(4N+3)* (#N+5) N

The first few polynomials BN are:

B« = o« =% )
3 3
B,(x*) = x* — £« + 3 ?
5 s
B (<) = «° - ffa* + oo~ gmp

¢ Y,

Apert from normallization factors, the polynomials BN

are Legendre polynomials:

o 2™ [ew]
By(«*) = (4N) ' EN (“)

(94a)

(qé)

(1¢)

(17)

(38)
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While a completely rigorous discussion wlll not be
attempted here, it should he clear from Figure 1 that
the solutions of the secular equations can be classified
into separate sequences of curves, each sequence apparently

approaching a limiting curve. Fror example, in the upper

b,c,d,e,f,g,h,(1),3,(k), L. A limit for this sequence

might be deflned by:

Wi = 3,‘;,“ (4*) P = 2,34 .. 3\
(ﬂék) ? (}??&)
| g36) - g0 — 0 (wow)

/

There is also a simllar sequence, in the upper pert of

Figure 1., labeled f,g,h,i,},k, £, with a limit:

w? = g“’\/ﬁ) P =678, ...

| L &) (994)
I @ﬁck) Sﬁ:z f )1 - 0 (7)—q-‘ﬁ)
The beginning of a third such sequence, gﬁ?(k‘), is

shown by the curves labeled j,kg.f. In the general case,

the limiting curve will be defined by:
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w* = .("*N"'z)(ka) P SN+2y §N+3, §N+4, ...

(WN+3) 4,
— Gw (A (776)
Ly | o ()

In the lower part of Flgure 1, the curves do not fall
i1nto sequences like (99), with 9 teking successive
integral values. Instead the curves group themselves
into even ana odd sequences. For example, there is ithe

even sequence labeled by b,d,f,h,J,L:
% W == ,Kg) (k*) v 2 HC, (lOOa)
There is also the o0dd sequence, e,g,i,k:
e = A8 () yes519,.. (100s)

In additlion, each odd secular equatlion includes the

root w = 0O:

= W0 v i (o0

A }




Among the upper curves of Figure 1 (the sequences

in (99)), those curves which are solutions of ths sguaiions
Dewey = 0O (Q‘f'b)
Dynrz = 0O (9#c)
:DJQ-N+3 =0 | (‘”‘{)

lie bracketed between curves which are solutions of (94a).
(An analytic proof of this geometrical statement wili not
be attempted here, but could doubtless be found from
Equations (92-98).) Thus to show that the upper curves
approach the limiting curve (84a) it is enough to show
that corres;onding roots of successive polynomlals BN
approach the limit «® = O as N approaches infinity.

The identificatiocn of "corresponding" roots of (94a) can
be made with the help of the roots of (94b,c,d). Figure 1,
with Equation (95), ehows that those roots of BN(axA“) for
which o® has its numerically smalleat valus are the roots
which give the curves in the sequence (992). Therefore
the smallest roots of By are "corresponding' roots.
Similar'y the next smellest réots of BN define gurves
which lie in the sequence (99b). 1In this way it 1is
determined that the roots of two polynomials BN and BN+1
are to be set in corresponrndence by counting upward from

the smaiiest root cf each poliynomial.




(

)

Approximate values for the two smallest roots of

the genersl polynomial BN can be calculated from the

last three terms, ths sarlier terms being neglected:

RN ) (CL/ s
0 ZSN'( ) lﬁﬂ”! ‘[)V{]A +

(2aN+3) (2N+D) (N IN-1)
6

+ «¥.

- ®. N-(QNH) + 1 (IOIa.)

- (2N+

22 <. i 2 / .
O(_ 3)(N-1) {} t (’5‘ + N-(2N+1) )‘/ } (/0 ] b)

The two approximate roots in (101b) both approach zero

as N approaches infinity, as was to bte shown. The higher

roots of (10la) can also be examined. For large values

of N, Equation (10la) can be written:

0= |- 2(N<) + 2 (W) - 2 (W)’
+ &= (Vo) — - (102)
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The approximation in (102) consists in omitting fectors

of the form:

[1 + O(ﬂ-)} (103)

Such factors should multiply each power of (N®«®) in (102),
but each of these factors approaches unity as N becomes
very large. The polynomial equation (102) will have a

set of numerical rocts, values of (N®x® which cause the
(infinite) polynomial to vanish. The smallest of these

roots 1is:

Nia? = 0.617 (I 01{—)

Aas N becomes infinite, (102) becomes an increasingly

better approximation to (10la), so that:

o = c:m{:j:wl: — O (,05)

where the constant in (105) is a numerical root of (102)

and doea not depend on N.
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Equations (105) and (95) show that the l1limit of
each sequence of curves in the upper part of Figure 1
is the straight line (84a). A similar discusaion can be
aprllied to the even sequences 1in the lower part of
Figure 1, because the curves setlafying {94c) are
bracketed between the solutions of (94a) and can be used
to determine which are "corresponding" solutions of (94a).
The same rule is found for the lower éurves as was found
for the upper curves: the rocts of BNGX“) are o be counted
upward from the smallest value of «®. The analysis in
Equations (101-105) can be used again, and (95) shows that
{(105), as applied to the lower part of Figure 1, 1is
equivalent to (84b). That 1s, the even sequences like
(100a) approach the limiting straight line w = O, Yet a
true solution of the infinlte secular detsrminant should

be characterized by the condition

w;, (k%) = wipn(k?) | = O (v—m ; u@(lé*)—»w;.(k;))

80 that both odd and even equations must be included.
Fortunately, the limiting solution of the even gequences
is alreedy a solution of each odd equation, as shown in
(100¢c), so that (84b), like (84a), iz a solution

satisfying the requirement (105').

The eigenfunctions are found from (84) and (81):
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The ccefficlents in (106) and (1C7) car alsd be

written in generalized notation:

(3= ko r #):

N

}

’ — .
(#v+1) = (5’3 :

(z.N - (#V+ I))
© (aN)

G+ 3) =_(/*-3* 5% e (N1 cw»ro)/z
Zoriere (an)*
(N+3) =& (’3'31'52' . (N-)* (av+)-(NF3) Y
2 = (2NY . (2N+3) ]
w12, 2% E2 .., NI (ZN""I); Ya
Nia) =@l 3*5%... (2N-))
(+4) 2\2% 4. €% 0 (2N} ¢ (2N+2).
(w =0> L ’
ey = (1% 3% 5% (2N-1P - (une D\
BN+ \2" 8¢ - (2N
/”'N'f‘:’%)l ] )
(kn+3)' 21 3% 8 e (a0 (e (44 3)
R \2’- lF-é“ - (an)* - (1N+2)
(#vrw) = O

)

\

—

)

/ﬁ::\
Q
L,

(09)
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In (108) and (109), on the left-hand sides, the coefficlents
a', ', ... , have been translated to the numerisal notation
(1)*, (2)', ... , which can mcre readily be written in
generalizeq form. As N 1s allowed to approach infinity,

the coefficlents approach the following limiting valuessz

(wr = o* + 4): (N —> o0)
(hn+1) — Z'G,,L)V"
2y = () (1)

i3f = ke ()"

! s Ya
i+ ) — o ()

o
N~

& |
2
N




SOLUTION IN CLOSED FORM

The solutiocns (84) of the Infinite secular determinent
were obtalned Tiom the requirement that the sequence of
secular equations, formed from finlte determinants of
increasing slze, should converge to a limiting equation.
The convergence wap expressed geometrically in Figure 1
and analytically in Equatiions (95) and (105). When the
limiting solutions (84$) and (84b) are substituted into
the expresslons for ths coeffieclents, the resulting values

(106-111) sre bounded and form converging sequences.

The coefficlents and functions can be combined, as
in (78), to form the eigenfunction  (¥) belonging to
elither of the two eigenvalues (84a) and (84b). If the
spherical besszl functions J,{wr) are expanded in power
series, then a regrouping of terms allows the complete
eigsnfunction to te expressed in closed form, in terms

of the ordinary bessel functions:
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(w2= A‘+4)'

V(F) = iJ (Kr‘smy} (1
+ ik J,(Krsinp) A ,,)
EA=r )

(nr sinn ) *r

+4&.ix J(nr sinn) [(,-»' (z” (112)

(xr sinn )

N e V‘VM)’)) 2 : =\
. Gl ~»~)} (13

The angle v) was defined in (71). The algebraic sign of
the quantity sinwy 1s not of significance in (112) and (113),

since only even powers of sin‘rL are involved:

e L O T D FASPPS F rerr 8n

4 L4
O(Krm)z)z I ._K_L__E.-!- 2';?:"*'2. T (“4-)
J; (er sinyy) Wrismy = Kr¥sintn

-_L. - 09O
(krsimg) — % 224 PR (15)




It can be seen that the wave functions (112) and (113)
have a limited dependence on ?, depending only on those
components oF T which are perpendlicular to ﬁ, That 1is,
for the plane wave solution (20) of the general wave
equation, the internal-structure function nﬁ(f") is wholly
tiransverse in character, at least in thls special case

of zero spin with Ti = T = +1.

The first of the two solutions, {(1i2), is of
particular intereet, since it describes the motion of

a particle with mass. Through (51), Equation (84a) can

be written:

K = K + () (11¢)

|

Equation (116) is the desired generalization of (32),

and reduces to (32) when the center of sravity is at rest.
Equation (116) i1s the familiar Einstsin relationship between
energy, momentum. ani mass, translated to ths wave terms

of frequency, propagation wevenumber, and rest frequency,

all exprressed in wavenumber units.

The second solution, (113), is a static solution, ase
shown by 1ts corresponding secular equation (84b). This

zero-frequency solution does not show vzrticle behavior.
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As written in (113), the second sélution does not remaln

finite as k 1is allowed to approach zero. However, the
wave function (113) can easily be renormalized to keep it

finite, simply by muitiplying it by k or k°®.

Discussion of the physical significance of the zero-

. frequency solution {113) will be deferred, hut the particle
behavior of (112) gives rise to the question of its
identificetion among the known elementary particles.

The fact that {112) is a zero-spin structure of pseudoscalar

character’ (an inversion of coordinates will interchange

the two waves of the double-wave system, reversing the

sign of the internal-structure wave functlon) suggests that

112) might represent a pi-meson. It might be supposed
that the charge of the particle could be reiated to the

T-dependence of the structure, perhaps with charged

structures having T; = ‘T , while neutral structures had

rc::=-""‘-’eo

by the results of Appendix C, in which it 1s shown that

However, such e speculation would be confronted

exactly the same roots, (84a) and (84b), are obtalned, no
matter which 7-depsndence is used. Thus (112) cennct be
identified as a pl-meson, because thers would then be no
way of accounting for'the observed mass difference between

the charged pifmeson and the neutral pl-meson.
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Nevertheless, from the study of other sitiructures,
to be discussed in separsate chapters, ihere 1s reason
to belleve that the etructure (112) is closely related
to the pi-megon, the éharged pi-meson probably being a
four-wave structure which combines the two-wave structure
{112) ﬁith a different two-wave structure (the photon),
to be describgd in another chapter. If it is tentatively
assumed that: (112) 1s a close causin.of the pi-meson,
and nas approximately the same mass, then a nﬁmerical
value ocan be givan to the rest-wavenumber 2X, which
represents the particle mass. The wavelength, which

would then correspond to the radian wavenumber W, is:

o= 28 07 em. (17)

It is interesting to note that, if the magnitude of f
18 allowed to approach zero, then (112) remsins dependent
upon the dirsction of EZ If,:.at'the same:time;:(112):1s
averaged over the direction of E; then (112) reduces to
the smolution which wes previously obiained, in {37), for

the speciél case in whieh the center of gravity was at rest.

The construction of a wave packet from the plane wave

solutions will be discussed in Appendix A.
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M THOD OF UNDETERMINED MULTIPLIERS

The secular equations (84a) and (84b) were obtained
from the infinite secular determinant {(80). Both a
geometric and an analytic method were used, but neither
of these two methode appears sultable for generalization
to the much more complicated secular determinants which
will appear later in the theoretical development, when
epin-one structures and three- and four-ﬁave systems are
analyzed. An alternative procecure of greater simpliecity,

19 be called the method of undetermined multipliers, will

be.described here and will be used in later analyses.,

It can be seen from (103) and (1C9) that the

- ccefflecients in the expansion of an eigenfunction fall into

four sets. Within any one of the four sets, the ratio of
any two of the coeffigciants is a pure nunber, with no
dependence on k or w. And a comparison of (108) with (109)
shows that the ratio 1s the same for bcth eigenfunctions, |

although this will not always happen with other structures.

In each structure that 1s analyzed it will be found
that the functions and the coefficlients can be grouped
naturally inte & finite number of such seta. In the prqéent

case the number of sete 1s four, but for other stiructures

e e




the number of sets may differ. In general the number of

sets is equal to the number of independent ¢-srin functions.

Wit'1 the method of undetermined multipliers the

infinit: secular determinant is reduced to a finlie secular

determinant of dimension egual to the number of sets of
funct

ions or coefficients. In the present case the reduction

is to a four-by-four determinant. Only one coefficlent

froem each set 1s used, the higher coefficients being replaced
by numerical multiples of the firs£ coefficlent in the
appropriate set, wherever 1t is necessary to use egquations

involving the higher coefficisnts. The undetsrmined

multipliere are then fixed by requiring that the secular

equation take one of the following two forms:
k> +
o , (ish)

in the present case, the'fifth coefficlent will be

wr? constant

w

written-as. a multiple of the first coefficient:

e = E-a°

-~
‘N
N2
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With the replacement' (119), the first four simultaneous

equations can be written wlth only four coefficlients

- explicitly involved:

—ra o+ 2 b =0)
2-a - wob + k-(%)'/’-cf
k-(%)%-bl’— w e + k(‘%)l/"d'

+ k-(’;‘,‘)"%' -~ w.d - J

= )

~
2N

~N
S

=0

2.(%'4’. L.5

There will be a solution for a', b', c¢', 4', in (120),

only 1f the secular determinant vanishes:

wr (i k= ) + -g-'/e'[r » E.z(;’-)V“] (121)

There are solutions of the forms (118), provided that:

O =

17

2 (,

Cemparison of (119) and (122) with (106-109) shows that

E = 7(5)

N
N
Ny

the results obtalned by thls method of undetermined

multipliers are the same as the re

(/]

ults obtained by the

geometrlic and analytic methods described prsviously.
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Once the ratio E hes been determined, as in (122), the

secular equation (121) becomes

0 = wiw—k*-u) (123)

which factors directly into (84a) and (84b). The individual |
coefficients can be found from Equations (120) and ihe
1atep equations in the simuitaneous system described by
the matrix (80). S8ince the equations are homogeneous in
the coefficients, cne'coefficient can be set arbltrarily.
If the first coefficient, a', is chosen to be unity, then

the whole list ¢f coefficients will be identical with the

list obtalned previously.

The method of undetermined multipllqre can be

.generaliiad. Instead of the minimum numbsr of equations, '
as in (120), any greater number can be used, with the

higher coefficients (beyond the number of equations) being

replaced by multiplea of lower coefficlients in the same set.

The secular determinant 1s then more complicated, but the

requirement that the secular equation be of the form (118a)

or (118b) leads once again to the same solutions. For

example, five egquations could be used, with the sixth

cecefficlent replaced by a multiple of the second:
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(12#)

o)
+4/é’-[! —~ F.:/:-\g})/zj } (125)
Fo=z(3)" (12¢)

With the choice (126), which agrees with (106-109), there
is in this case, besildes the two desired solutions (118),

an additional root:

wt = %;— (}ﬁ‘7)

This root is not of the forms (118) and doea nct recur
as the number of equatlons ias increased, I% 1s therefore
considered a spurious root not characteristic of the

infinite eqﬁation system.

Six equations could have been used inataad of five

or four:

g =G (128)
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+ u/e‘-[l —"6-2-[%-)"‘] (129)
6 = +(2) (139)

Once again, in addition to the desired roots (84), there

is an additional, spurlous rcot:
2
w* = # (]'3 h)

If eight (or more) egquations are used, there 1s then a
choice in the way the higher coefficients are to be
expressed, but the resﬁlting aolutions.are the same, no
matter which alternative 1s chosen. For example, the
iiinth coefficient may we expressed as a_multiple of the

first, or as a multiple of the fiftih:
:/ / :
A = I-a (1322)

4 ! /
4" = T -e | (’325)\

These alternatives lead respectively to the sacular

equations:
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In either case, the same soluticns as before are obtalned

in the same way as befere:
=% (3

-,1;"('5:) (1344)
It would, of course, be possible to generalize ihis

procsdurs with tlis hislp of the general matrix elemsuis

in {(90), but the essential simplicity of the method would

thereby be lost. The practicality of the method of

undetermined multipliers lies in the c¢larlity and dlrectness

of its simplsat form, &3 illustrated in (118-123).
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THE FERMI SEA

. It is clear from the form of the functions in (64),
(122), and (113), that the double-wave structure is nct
a deuteron-like combination of two sub-particles bound
togetner in space, since such & combination would involve
a negative-exponenitial dependence upon the relative
coordinzie r, whoreas the nctual functions show a periocdic
dependence upon r. The structure is actually & standing-
vave system; a partially locallized conflguration which
has a center and an identity, and which, in the case of
(112), moves ae a particle, as shown in (116). However,
the structure can be resolved into its elements, these
elements being primitive waves extended through the
universe. Each function in (64) 1s the combination of
a converging and a diverging sphericel wave, while ihs
waves in (112) and (113) are cylindrical. The fact that
the dependeﬂce upon r is periodic rather than exponentiel
is an intrinsic feature of the theory that goes back to
Equations (31), to the positive sign accompanying the
constant terms there, and back further to (20) ard the
assumption of a periodic dependence on the laboratory
time T, and to (17) end the cdeliberate omission of any

explicit coupling between primitive waves.
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It should alsc be noted that all the fuactions
used in the double-wave'struoture have the saﬁe periodicity
in space, a perlodicity characterized by the wavenumber ¥.
The possible physical slgnificance of this aqnantity w,
which serves as the unit ¢f mass, 1s the main subject of

the present section.

If a structure such as (118}, satisfying the
Einstein relationship (116), is to represent a particular
kind df particle, with a particuler mass 2%, ‘then
several such structures, rcprosenting several perticles
of the same kind, ought all to have the same valus of
rest mass or rest frequency. The wavenumber W, the unit
of res£ mass, ought therefore to have the sams value for
all ¢ the separate structurea. In addition there are
many other kinds of possibls siruciures; a double~wave
structure of spiﬁ one.and & itriple-wave structure of
spin one-«half will be described in separate chapters.

In each case the rest mass will appear as a multipls o}
a wavsnumber ¥, and it is important that the X have
the same wvalue and significance in each case, 80 that
numerical mass ratios can be calculated and comparcd

with experiment.
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It hes already been pointed oui, in the discussion
of Equation (116), that the structure (112) is actually
not a satisfactory mcdel for any of the kncwn elementary
particles, but other structu.es will be found to be
satisfactory models for certaln of the elementary
particlea, and in these cuses the arguments jusi given
ecquire a speclal valildity. From these arguments the
wavenumber K emergeés as & basic constant, the reciprocal
¢f & fundamental length, though as yet without a physical
meaning. It is posslble, still withoutl asxiiyg aboul
physical meaning, to suggest a simple rule for bullding
functions in the more complicated cases. If Equation (16)
12 used to exéress the relative vector, ¥, in terms of
the individual vectors, T; and ?}, then it is found that,
at least for small values of'f, the structural functions

are bullt from a pair of primitive waves, each having the

same propagation wavenumber ¥ . In the generalization to

a trizle=-wave structure, the form of the wave equation
indicates that the scalar dependence upon the relatlve

-
iﬁ

~r - - ey - i}
vectors, ¥ = 2(2r, - rg - rs) and p = (re - rs), should

e & product of spherical bessel functlons. Within this
limitation, the wavenumtbsr K can be introduced in such a
way that, in particularly symmetricel orientations of the

three waves, the waves sach have the same wavenumber K.
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In the triple-wave case the functions nust be

antisymmetrized, and permuted coofdlnates are useful:

F-g(2% -7 -5) = (R-R)
7= 4(4% - ) P”-——- (r~;~?:>

Frot(zr-5-R)  Fr=(R-7) |

The appropricte products of spherical bessel functions

can be abbireviated:

fom = (7] (5 10)

v

fom = ) g (B p’)
fum = §m (Kr'”)-gm(%xf”)

Two independent solutions of the triple-wave equation
ocan be generated from the following two functions, in
which the abova abbreviations and the conventional spin
noctation are used. (These funcuions are included here
to 1llustrate the multiple-wave generalizatlons of the
double-wave functions. Detalled discussion of the
triple-wave and quadruple-wave solutlons will be

reserved for later chapters.)

(135)

(13¢)
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: - _
N/a); = 7&+(fr) X)X 3}_[.{[24” ~ 4o —3;’,,].

[ ) - X)X ) X ) |

~[ 4% goo] [2-x@) XH@) X *(G)
- X6 X)) = X)) X ﬂ% (137)

- X)X () X = X ) X)X () )
[x*@r) X (a) X H*es) - X*{@)-X*(,’G)'X”(G)j
= [x@) X @) X ) - X ) X)X ()]
1 2-X°(%) X)X @)
=X )X () XE) — X @) X)X () } (3%)

While it 1s not strictly necessary, in bullding
structures, to attribute a puysical meaning to the
fundamental wavenumber K , such 2 physicel meaning 218

nevertheless desirable and cen actually be constructed
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through general arguments:which sre similar to those
in the first two sections of this chapter, though pernaps
less compelling. These arguments will be glven in: more

in the following abbreviated form:

Since all elementary particles are observed to
combine in themselves a wave aspect and a particle
aspect, 1t can be inferred thét these are iwo concepts
which are needed in the bullding 6f all particles and
are therefore concepts which belong on the next concepu.ual
level beloﬁ the level cof the eleméntary particles, Thue
the primitive fleld itself should have both s wave aspect
and a particle aspect, since the primitive field must
include whatever i3 found on its conceptual level in order
to ensure its singleness. Furthermore, since all the
elementéry particles (so far as.is known) respond to
gravitation, and in exactly the same way, the primitive
f1e1d itself should Uec directly related to gravitation,
and ought to resbond to gravitaticn itself. 1In its
particle aspect it should show'partlcle response, in its
wa%e aspect wave response, but these two responses should
not be separate vhenomena but different aspocts of the

same phenomenon.
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'The response of particles to gravitatlon can be
visdaliZed, for example, by considering the behavior of
the molecules. of the earth's atmosphere. These'particles
exhiblt a denslty gradieht; nearer t)e.source of gravitation
the partlicles congregate in greater -umbers. The wave
response can similarly be visualized. A wave responding
to0 the same gravitational attraction would be bent toward
the source, with the result that the successive waveironts
in the wave train would be crqwded together on the lower
side and spread apart on the upper gide of the wave trailn.
There would thus be a wavenumber gradient psralleling
the particle density gradient. These two gradients can
represent the same phenomenon from two points of view
provided that the primitive field is of such & nature
that a wavenumber gradient always accompanies a parallel
density gradient in gravitatlional situations. It has
already been pointed out that the Primitive fleld should
have Fermi-Dirac statistlics, tut the gravitational argument
reinforcee this concluslon, since a Fermi-Dirac fleld 1is
needed tc produce such a correlation between wavenumber
and denslity: If a certain number of Fermi-Dirac waves or

particles are enclosed in a box of a glven size, then the
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ground staie is a state in which alil possible levels of
the Tield are occupled up to a certain wavenumber; and
the greater the numerical density, the higher the wave-

number marking the top of the "Fermli sea',

Itlis not essential that the syetem be in its lowest
state, but it 1s negessary that the system be reasonably
close 0 equilibrium at a low "Fermi temperature", so that
the wavenumbsr valus marking the apuroximate surface of
ths Ferml sea can actually be defined. If the system
were in a highly exclited, non-equilibrium state, the
desired correlation between wavenumber and numerical
denslity could nct be established. When the system 1s near
equilibrium .t a low Fermi temperature, then disturbances
or deviations from equilibrium will tend to be localized,
in wavénumber space, to the regions near the Fermil surface.
In particular, elementary particles, viewed as excitations
of the primitive fleld, will tend to be bullt from
primitive waves near the Ferml surface, from primitive
waves &li naving the samc wavenumbsr W, where 3¢ is the
height of the Ferml sea. Thus the foregolng argument
leads to the same rule for bullding elementary particies
that was described earlier, while giving an added physical

meaning to the fundamental wavenumber ¥.
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Howevei', W emerges fron this argument not as a
_universal constant but as a parameter which varies through
space, being greater in those regions where the gravitational

potential 1s higher. 8ince Y s3rves to set the scaie of

; nass for the elementary particles, and wc sets the scale

of frequency, both masses and frequenciesg will also vary

through space, though only gradually. In reglons where

R —

there 1is a.gradient of W, a standing-wave structure of
the sort which has been anslyzed in this chapter can stiil
, be matched to such a slcping boundary conditlion, but the
structure thereby acquires an acceleration c¢f gravitational
cheracter. Furthermore, the primitive wavee used in the
structure will themselves te refracted in passing through
such & region of changing wW. and the incorporation of

! refracted waves into an acceierated structure leads to
gravitational effects which include the three crucial

| . phenomena described by Einstein. The detalils of t.e
gravitational celculations are given in a separate

| chapter.

It will be found helpful, in the discussion (in a
separate chapter).of ihe origin or source of the

gravitational gradients, to assume a non-vanishing

a o
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spacing of the levels in the Fermi sea. This 1s
equivalent to the localiization of a primitive wave

within a dimenslion of cosmic slze, of the order of two
billion light-years. It i1s intended to effect this
localizaticn through the inclusion in the primitive

wava equation of a very small mass-like term {probably
imaginary), 80 small that the velocities of such struciures
a3 the photon.and neutrino would not be apprecliably
changed from ¢, although there might be small but
significant modifications of equations, which might, for
eﬁample, affect the sxplanation of the galactic red-shift.
In Appendix D there ;s en analyesis of those modifications
of the double-~wave, spin-zero structure which would
accompany the incorporation of & very small mass-like

term in the primitive wave equaticn.

=i
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SUMMARY

In'order to terminate the historical seguence which
has led through atoms and nucle!i to the elementary
particles, it 1s postulated that there existis a single
primitive wave fileld, 2_5 , whose properties are to be
inferred from its singleness. The spin should be half-
integral and 1s chosen to be cne-half. The veloclty
ghould be no less than the velocit& of & photon, end
the mass 1s chosen t¢ he elither zero or 50 small that

1t would correspond to a Compton wavelength of cosmic

£ dimension.

On the assumption that the mass is rigorouely zero,
a wave equaticn (1) 1s written down and a double-wave
equation (17) is cemstructed. Two solutions with zerc
spin are: found (112,113) asnd related soluti§ns aré
given in Appendlix C. The construction of a wave pécket
is described in Appendix A. An auxiliary equation (18)
giving the dependence on the relative time variable
is solved in Appendix BE. In Appendix D are described
the modiflcations which follow the inglusion of a very

small mass In the primitive wave equation.

-
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In ihis theory operators are regresented by infinlte
matrices, and one such matrix {80) 1s studied in
conslderable detall, in order tq Justify a simple
method (the method of undstermined multipliers) which
will be used in later. .c¢hapters in the.reduction ofiother

infinite matrices to finite forme.

The solutions of the double-wave equation are
starding-wave systems, combinations of converéing and
diverging primitive waves. The physical interpretation
of the solutions, based partly on gravitational arguments,
is that the univeres 1s occupisd by primitive waves
which form a Fermi sea, f1lling momentum apace (or
wavenumber space) up to a certaln level which is measured
by the wavenumber W, Eleméntary particles are standing-
wave structures formed from primitive waves near the

surface o the Ferml sea.

If the spln zero structure (112), which moves like a
particle with mass 2% (in wavenumber units), is
tentatively ldentifled as a near cousin to a pl-meson,
then the wavelength of éhe primitive waves at the surface
of the Fermi sza is 2w/ = 2.8 - 10™*® cm. In addition
to the particle solution (112) there 1s a static solution

given in Equation (113).
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Like all theories, thls theory can only build upon
the i1deas of others. Of particular importsncs in the
formulation of this theory have been certain ldeas of
Larmor, Bohr, &s Broglie, Dirac, and especially =minstein.
The omission of an extenslve bibliography should be teken
as evidence that the multitude of asources was too great

10 be reduced to a ilst.
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